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Surfaces 

In a Monte Carlo computer experiment, we simulate the Gibbs distribution of 
nonconnected two-dimensional surfaces isometrically embedded in three-dimen- 
sional Euclidean space with fixed boundary and the action given by the area. 
The simulation involves surfaces built out of plaquettes in a cubical lattice. The 
foam structure is analyzed in terms of correlations of the local fluctuations in 
the Euler characteristic and the area. The scaling behavior of the area and the 
Euler characteristic is discussed by varying the boundary. We show evidence of 
a phase transition point which is independent of the choice of the boundary. An 
existence proof is given of the thermodynamic limit for the models considered. 

KEY WORDS:  Random surfaces; topological fluctuations; Monte Carlo 
simulation; phase transition; boundary effects. 

1. I N T R O D U C T I O N  

Since Polyakov's article, (1) there has been a revived interest in the theory of 
string quantization. Thus Alvarez (2) and Friedan (31 discuss the continuum 
aspects of Polyakov's approach. On the other hand, the lattice versions of 
the theory of random surfaces are considered important in the context of 
lattice gauge theories; see, e.g., Refs. 4-12. In particular the formal N--*0 
limit for U(N) lattice gauge theories leads to the theory of self-avoiding 
random surfaces (13,14) (for a correction see Ref. 15). This is analogous to the 
formal N ~ 0 limit for N-component lattice spin systems, which gives the 
theory of self-avoiding polymers. (16-~s) 

In this note we want to use a cubical lattice to simulate embedded ran- 
dom surfaces by planar surfaces. We use this example to address the 
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problem of the role of topological fluctuations in quantum field theories. 
The observable we will study is the Euler characteristic. In this lattice for- 
mulation, it will be defined on all configurations of our statistical ensemble. 
This contrasts, for example, with the situation in lattice gauge theory, 
where it is not possible to associate a Chern class and number to every lat- 
tice gauge configuration (see, e.g., Refs. 19-21). 

The aim of string quantization in its Euclidean formulation may be 
described in purely geometrical terms. Consider an arbitrary, but fixed, 
smooth Jordan curve 7 in E N, the Euclidean space in N~> 3 dimensions, 
and let C(7) be the family of all isometrically embedded, smooth compact 
2-manifolds M 2 with boundary OM2= 7. M 2 need not be connected, but if 
it is, it is called a Teichmuller space. One would like to have a theory in 
which formally the elements m 2 in C(7) are distributed with relative dis- 
tribution 

e x p [ - f l  Area(M2)] (1.1) 

Note that the area action corresponds to the cosmological term in the 
theory of gravity, fl ~> 0 is a coupling constant with the dimension of an 
inverse area. Such a theory would therefore be governed by two scale 
parameters, namely, fl and the length /(7) of 7. If C(7) contains a (not 
necessarily unique) minimal surface 2 Mmin(7), the relative distribution may 
be rewritten as 

exp [ - flE(M 2) ] (1.2) 

with the nonnegative energy function 

E(M 2) = Area(M 2) - Area(M2i~(y)) (1.3) 

as the action of this theory. We then may also introduce the dimensionless 
coupling constant fl' by 

fl =/~' �9 Areamin(7) (1.4) 

A discussion of all possible local counterterms that may appear in this 
theory has been given in Ref. 2. The structure of the possible local terms in 
the action is our reason for considering manifolds which are not necessarily 
connected: There is no local interaction to enforce this property. 

This may also be the reason for the difficulty in establishing reflection 
positivity in other models of random surfaces, where connectedness is 
required (see, e.g., Ref. 15). 

Now a nonconnected manifold with boundary may alternatively be 
thought of as a connected manifold with boundary immersed in a sea of 
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closed manifolds ( = v a c u u m  fluctuations). In the picture of the 
Go to -Nambu  Strings (22'61) it corresponds to an open string (=quark-an t i -  
quark) moving in a surrounding sea of closed strings (=gluons).  Therefore 
globally the effect of the boundary should vanish as long as one looks at 
densities like the energy density. In the models we will discuss, we shall see 
that this is indeed the case. However, if we subtract the vacuum fluc- 
tuations, one should be able to observe the effects of the boundary, and 
this is what we will do. Now in a sense one expects this approach to be the 
same as when one considers connected manifolds only. But at least in the 
concrete models we will discuss, there will be interference effects of the con- 
nected manifold with boundary with the surrounding sea of closed 
manifolds; in other words, this manifold will at least locally polarize the 
vacuum. Therefore we expect these two alternative descriptions (connected 
versus unconnected) not to be equivalent. 

Now one local counterterm is the Euler characteristic: By Gauss' 
Theorema Egregium for any compact two-dimensional Riemannian 
manifold M there is a 1-form on OM= 7 (the second fundamental form) 
and a 2-form on M (the Gauss-Bonnet density) which when integrated 
over ~ and M, respectively, and added up give the Euler characteristic. This 
is an integer, and as a side remark we note that this property continues to 
hold if the compactness assumption is replaced by the weaker condition 
that the manifold is complete, the area is finite, and the curvature is 
bounded. ~24) 

So on C(~) the Euler characteristic Z(') is well defined and integer 
valued. Furthermore, if say, dM is a Jordan curve, there is the relation 

z(M) = 2- # (connected components of M) 

- 2.genus of M -  1 (1.5) 

Here the genus of a 2-manifold is the number of its handles, which 
intuitively is the number of times a manifold connects up to itself. 

Although the connectedness and the genus are also intrinsic (i.e., 
independent of the particular embedding), they are not locally computable 
quantities like the Euler characteristic number. Finally there are also 
invariants under homeomorphism (leaving 0 M = y  fixed) which are not 
intrinsic. Let, for example, 7 = ~ and let M have two components, both of 
the form of a doughnut. The way they interlock (or not) is not an intrinsic 
property. In this article we will not be concerned with such extrinsic 
properties. 

Now in the formal probabilistic context given above, Z becomes a ran- 
dom variable, and intuitively one expects large fluctuations in topology and 
in particular in Z, since it is possible to deform a given manifold M into 
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one with a different topology without using energy. (Note that even if one 
adds to the action a term proportional to the Euter characteristic, strong 
fluctuations in the topology will still persist; for example, the same energy 
arguments continue to apply in the sector X = 0.) 

One aim of this paper is to test this intuitive picture numerically in an 
approximate lattice version. We view this discussion as a step in achieving 
an understanding of what Wheeler has termed the foamlike structure of 
space and time and which is expected to occur in a quantized theory of 
gravity. (25) 

To obtain a quantitative test of this picture we proceeded as follows. 
On a lattice we simulated discrete versions of two-dimensional manifolds 
with a local upgrading by a Monte Carlo procedure. With M(t) denoting 
the manifold obtained at computer time t, we calculated the local differen- 
ces g)E(x, t) and 6 Area(x, t) of the Euler characteristic and the area, 
respectively, of the manifolds M(t) and M(t+ 1). Let -t denote the time 
average. If 6 Eul(x, t) and 6 Area(x, t) were independent random variables 
with respect to then for any functions F and G of 6Eul(x, t) and 

Area(x, t), respectively, we would have 

FGt=FG ~ (1.6) 

Hence the closeness of the quantity 

FGt/ff~G~ (1.7) 

(or its inverse) to 1 is a measure of the statistical independence of Eul(x, t) 
and Area(x, t). In our numerical calculations we choose F=6 Eul(x, t) 2 
and G = [3 Area(x, t)] +2. 

6 Eul(x, t) 

6 Area(x, t) 
(1.8) 

may be interpreted as the local change in the Gauss-Bonnet density of the 
"manifold" M(t) at the lattice point x, where x is the point where the local 
upgrading is taking place at time t. 

The lattice version we will use will also allow us to analyze other 
aspects of random surfaces. For any value of the coupling constant // as 
already indicated the ensembles C(7) and C ( 7 = ~ )  should only differ 
locally around 7, i.e., far away from 7 a typical representative of C(7) and 
one from C(7 = ~ )  should look the same. In other words, the polarization 
effect of the boundary 7 should extend only to a neighborhood of 7. We test 
this picture by measuring the difference of both the mean area and Euler 
characteristic on the configurations C(7) and C ( 7 = ~ ) ,  respectively. 
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According to this picture these differences should be intensive quantities. 
This is supported by our analytical result. Our numerical findings also con- 
firm this. Furthermore they indicate a phase transition with a critical tem- 
perature located a t / ~  0.5 which is independent of 7. Note that these results 
do not contradict the fact that for /~ sufficiently small one expects with 
probability 1 the connected component of M, which contains 7, to extend 
to infinity. The lattice version of this is of course the percolation of surfaces 
(see, e.g., Refs. 15, 26). The observables we work with, however, are not 
sensitive enough to measure to this effect. 

Finally this system opens up the possibility of discussing loop-loop 
correlations in the following way. Take 7 = 71 w 72(x). Here 72(x) is a trans- 
late by x of 72 for x ~ oe, one should expect cluster properties. This could 
be of interest in the context of a study of correlations of Wilson loops. 
Since larger lattices are needed for a reasonable analysis, limited computer 
time prevented us from performing such a study. 

We also note that the comparison of C(7) and C(7 = ~ )  as 7 becomes 
infinitely large could give information on the roughening transition, since 
an M with 0M = 7 large may be interpreted as an interface (see Section 2). 
Comparison of our numerical results with the known value for a phase 
transition point at/~ ~ 0.78 show, however, that the observables we use here 
are not suited for such a purpose. 

In Section 2 we give the definition of the model. Section 3 contains a 
presentation and discussion of the numerical results. Finally in Section 4 we 
give a proof of the existence of the thermodynamic limit of the model. 

2. D E F I N I T I O N  OF T H E  M O D E L  

In this article the embedding space will be three-dimensional. Note, 
however, that in the continuum version there is Nash's theorem, (27) which 
states that any compact Riemannian manifold of dimension n may be 
isometrically embedded in an E s with N =  (n/2)(3n + 11). In particular for 
two-dimensional manifolds N = 1 7 .  Hence the choice of E 3 also 
corresponds to some form of cutoff. 

Consider the cubical lattice (aZ) 3 c E 3, i.e., the set of points x =  
(Xx,Xz, X3) in E 3 with xja Xez(i=l,2,3, a>O). In the usual way, we 
obtain/-cells c i. The 0-cells or vertices are the points of the lattice, the open 
1-cells are the (nonoriented) bonds. As sets they corresponds to open inter- 
vals, whose end points are any two neighboring vertices. The 2-cells are 
called plaquettes. As sets they are the open squares formed by taking the 
convex hull of any four neighboring vertices which lie in the same 2-plane. 
Finally the 3-cells are the open cubes. Discrete versions of C(7) may now 
be obtained as follows. First let 7 be any finite family of closed 1-cells, such 
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that every vertex of 7 is contained in exactly two closed 1-cells, i.e., ~ forms 
a union of nonintersecting, piecewise linear Jordan curves in E 3. In the 
numerical calculations presented below we will consider two typical cases: 
In the first case 7 is empty and in the second case 7 forms the boundary of 
a square. 

Our discrete version M of a manifold is now what is usually called a 
two-dimensional cell complex, i.e., a finite family of 2-cells together with 
the 0-cells and 1-cells contained in their closure. In addition we require that 

is exactly the family of 1-cells in M which are contained in the closure of 
an odd number of 2-cells of M. Let Cl(y) be the (infinite) family of cell 
complexes thus obtained. The advantage of considering C1(7) will be its 
close relationship to the three-dimensional Ising model to be discussed 
below. Note, however, that Cl(y) contains self-intersecting "manifolds." 
Therefore we also consider a family of self-avoiding manifolds, given as a 
subset C ( 7 )  of C~(7) in the following way. M s  C~(7) belongs t o  C2 (7 )  iff 
any 1-cell is contained in the closure of at most two 2-cells of M (this con- 
dition makes M a pseudomanifold; see, e.g., Ref. 28). We also want to 
avoid corner contacts, so we require in addition that no vertex of M is con- 
tained in the closure of six 1-cells of M. Note that in none of these two 
models do the manifolds fold onto themselves. More importantly these 
manifolds are not necessarily connected. 

We now put these considerations into an analytic form. We consider 
any/-cell  c i in (aZ) 3 to be a function on C~(7) by 

f 1 if c iis in M 
c (M) = (2.1) 

0 otherwise 

In what follows we will identify cells with these functions they define. 
The area and the Euler characteristic now become functions on C~(7) 

as follows: 
Area(M) = a 2 ~ c2(M) 

c 2 

= a2#  (c 2 s M) (2.2) 

and 

z(M) = ~ ( -  1)' c'(M) 
C i 

= #(c~ 7~(clEM) q - #(c2sM) 

Note the following a priori estimate 

(2.3) 

Ix(M)[ ~ 12a -2 Area(M) (2.4) 
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which reflects the fact that the lattice formulation acts as a short distance 
regularization. 

We may express c o and c 1 and hence x(M) in terms of the basic 
dynamic c 2 variables as follows. Using the relation Max(x, y)  = x + y - xy,  

valid for any x and y which only take the values 0 and 1, an easy 
calculation gives 

c1= ~ '  ( - 1 )  Izr+lI~ c2 (2.5) 
1~<111~<4 i E 1  

r~ ~ C 1 

The prime in 52' denotes the restriction that the c~ with i in I are pairwise 
disjoint. Similarly 

cO= ~ '  ( - 1 )  vl+xI~ c2 (2.6) 
1~<111~<8 iE  I 

~ C O 

As a consequence the Euler characteristic is a polynomial of order 8 in the 
C2'S. 

We now turn to a construction of the thermodynamic partition 
functions. For any finite region A D 7 in R 3 let C~(7) consist of those M in 
CJ(7) which are contained in A such that dist(M, 0A)>~l ( j = l ,  2). 
Obviously C~(7) is a finite set. We will require 0A to be piecewise smooth 
and to have a tubular neighborhood of radius > x/3 + 2. 

For any/3 >~ 0 we now define partition functions 

ZA.~.j,, = ~ exp[ --/Y Area(M)], j =  1, 2 (2.7) 
M e cJ(y) 

and the corresponding free energy density 

1 
P A.,j,~ -- N ( A  ) In Z A,,j,~ (2.8) 

where N ( A )  is the number of 2-cells c 2 in A (we adopt the sign convention 
of Ref. 29). 

Now for j = 1, the case of self-intersecting manifolds, and all dimen- 
sions d, it is well known that these quantities can be expressed in terms of 
the 7/z lattice gauge theory (see, e.g., Ref. 30, 31). In fact, a short 
calculation shows that ZA,,.1,~ is proportional to the unnormalized expec- 
tation value for the Wilson loop 7 if the inverse temperature 3g for the 
Wilson action is related to our/~ by the duality relation tanh/~g = exp(-/3). 
In particular the quotient ZA,p,I,~/ZA,,,1, ~ = ;~ is just the expectation value for 
the Wilson loop. Hence our results for j =  1 pertain to the Z 2 model (and 
are known or could be obtained with this translation code). 
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Correlation functions are given as 

(f2)A,~,s,~ - -1 --ZA,t~j, 7 ~ f2(M) e x p [ - / ? A r e a ( M ) ]  (2.9) 
M e CJA(7) 

where Q( ' )  is any (bounded) function on C1(7). Of particular interest are 
the ~ 's  from the set ~ of all polynomials in the basic random variables c 2. 
Their expectations give Green's functions, which are of interest in the 
theory of string quantization. For  example (Ck)A,#,S,~ is the probability that 
the k-cell c k is part of an M s  Cs In Section 4 we will establish the 
following theorem. 

T h e o r e m  2.1. For  all 3 ~> 0 and j =  1, 2 the thermodynamic limit 
for the free energy density exists if the limit A --* E 3 is taken in the sense of 
van Hove (see, e.g., Ref. 28): 

lim Pa,~,zr = PB,j,~, (2.10) 
A ~ E  3 

Note that N(A)/Vol(A) ~ 3 as A --* E 3. 

We prove a similar statement for the correlation functions. 

Theorem 2.2. For all /~ >10 and j =  1, 2, the thermodynamic limit 
exists for the correlation functions 

lim (O)A,#,s,r= (O)~,j,~, ~bsZ (2.11) 
A ~ E 3 

where the limit again is taken in the sense of van Hove. 

In what follows we will set the lattice spacing a equal to 1, since the 
lattice constant a may be incorporated into the definition of 3- 

Note, however, that this lattice formulation with planar random sur- 
faces lacks an important feature, believed to be relevant in any theory 
where one wants to perform the scale limit a--+ 0. Indeed, there is no 
classical limit theorem for the action, since areas of smooth manifolds in 
general may not be approximated in this way. This contrasts with Regge 
calculus, ~32~ which works with simplexes instead. There one has a classical 
limit theorem not only for the volume but also for all Lipschitz-Killing 
curvatures, in particular the scalar curvature and the Euler 
characteristic. (33) In particular the simplicial structures allow one to view 
the bond lengths as dynamical variables (see, e.g., Refs. 34-37) leading to 
an ansatz for lattice gravity. Furthermore, one can imagine randomizing 
the simplicial structure (see, e.g., Refs. 36-38). This could lead to the 
intriguing context, where also the space-time dimension becomes a 



Euler Characteristics of Random Surfaces 541 

dynamic observable. Returning to our present context, our lattice for- 
mulation may therefore not suffice, if one is interested in more detailed 
structures of C(7). As an example we may also mention the recent analysis 
concerning the Hausdorff dimension of random surfaces with a lattice for- 
mulation involving triangles (but with fixed incidence matrix). (39'4~ 

To obtain some insight into our statistical ensembles, it is instructive 
to note that for the case y = ~ ,  the ensemble CI(7 = ~ )  is in a one-to-two 
correspondence with the configurations of the Ising model in three dimen- 
sions. This is well known (see, e.g., Ref. 41); in fact an element M in 
C~(7 = ~ )  is nothing but the Peierls interface for a configuration of the 
Ising model. More precisely, to each 3-cell c 3 associate an Ising variable 
O'(C 3) = +1 and let the action as usual be J ' Z  a(c3) a(c3'), where the sum 
is over nearest neighbors, i.e., those pairs c 3 and c 3' whose closures intersect 
in a 2-cell c 2. For a given Ising configuration, i.e., given values of the a(c3), 
we construct M e C  ~ ( 7 = ~ )  by the condition that c 2 E M  iff 
a(c 3) o-(c 3') = - 1 ,  where c a and c 3' are the two unique 3-cells in the closure 
of which c 2 is contained. Conversely, to any such M correspond exactly 
two Ising model configurations differing by an overall minus sign. Also the 
actions are equal provided one makes the identification 

2 J = f l  (2.12) 

Moreover, this correspondence takes the explicit form 

C 2 = � 8 9  (2.13) 

where C2 C3, and c 3' are related as above. 
Recall also that the Ising model for d =  3 is dual to the Z 2 lattice 

gauge theory (see, e.g., Ref. 31). 
A simple calculation now shows that 

c l = 1 - � 8 9  ~ '  cr(c~)a(c 3) 
1 

- 3 )  (2.14) 

Here C13 (-'~ C230 C33 ("5 C43= C 1 and again Z '  denotes that the sum is over 
pairs of different 3-cells. With the same convention we also have 

1 1 
cO= 1 ~ '  1-1 a(c3) (2.15) 

128 128 2~<111~<s i~x 
I11 even 

c~ ~ c~ 
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The invariance of (2.13)-(2.15) under the global Z2 symmetry trans- 
formation a--+ - o  reflects the one-to-two correspondence with the Ising 
model configurations explained above. 

This calculation holds for the infinite volume limit case. In a finite 
volume A these expressions are still valid for c / (i = 0, 1, 2) in int A (the 
interior of A), while there will be modifications at the boundary (?A. [Also 
the boundary conditions may be implemented by the choice a(c 3) = 1 for 
dist(0A, c 3) =0,  thus reducing the above one-to-two correspondence to a 
one-to-one correspondence.] These corrections may be calculated, and 
below we give them in Section 3 when we compare the analytic solution for 
/ /=  0 with the numerical results of the computer simulation. 

The main point now is that, when 7=  ~ ,  the area and the Euler 
characteristic are certain polynomials in the Ising model variables cr(c 3) of 
order 2 and 8, respectively. Moreover we have the obvious bounds 

Area ~< 3 Vol(A) 
(2.16) 

]Z147 Vol(A) 

Hence, for those/~ for which there is a unique thermodynamic limit for the 
Ising model correlations, the expectation values of the area density 
Area/Vol(A) and the Euler characteristic density z/Vol(A) have a finite 
limit in the ensemble C1(7 = ~ )  (similarly Theorem 2.2 for j =  1 is a con- 
sequence of corresponding results for the Ising model). Now this property 
extends to the ensembles CJ(7) (j  = 1, 2) in the following way. In Section 4 
we will give the proof of the following theorem. 

T h e o r e m  2.3. For j =  1, 2, when A ~ E 3 in the sense of van Hove, 
the limits for the expectations of the area and Euler characteristic volume 
densities exist in any of the ensembles CJ(~:) in the following cases. 

For almost all/~ >/0: 

1 
)i~mE3 Vol(A) (Area)A,~,j,~ = (aread)~j,7 (2.17) 

For all/~ ~> 0: 
1 

lim (Z)A,~,j.~ = ~ = (Td)~.j,,~ = ~ (2.18) 
A ~ e3 Vol(A) 

The subscript d has been introduced to denote densities. If 7 = ~ ,  the limit 
in (2.17) exists for al l /~>0.  

This theorem gives the first important consequence: For generic/~ >/0 
with probability one the area and the Euler characteristic are infinite in the 
corresponding ensembles C J(7). 
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The next theorem gives a partial result concerning the comparison of 
theories with different y, which we recall for simplicity are assumed to be 
the boundaries of squares. 

T h e o r e m  2.4. The difference of free energies in a finite volume A is 
uniformly bounded in A: The estimate 

[ln ZA,fl,j, ~ - - I n  ZA,~d,~ = ~1 <~ C Areamin(Y) (2.19) 

holds uniformly in A with a constant C depending only on /~. A similar 
estimate holds if the action in addition contains a term proportional to the 
Euler characteristic. 

Although all proofs are carried out for the embedding space E 3, they 
may easily be extended to arbitrary E a. An alternative existence proof for 
the thermodynamic limit of (2.10) with an improved estimate in the case 
j = 1 is given in Ref. 42. 

As far as macroscopic observables per unit volume are concerned, not 
surprisingly the ensembles with and without boundary are identical. In fact, 
by (2.10) the free energies per unit volume are the same. The content of 
Theorem 2.4 is therefore that one must look at differences of the free 
energies. They provide the information on the effect of the boundary. We 
will interpret the difference in (2.10) as the polarization energy of the boun- 
dary. If we calculate this polarization energy per unit of the enclosed area, 
i.e., divide by Areamin(y), then by the correspondence to the 22 lattice 
gauge theory for j = 1, we may interpret the resulting quantity as the string 
tension in the limit y ~ oo. 

Next by Theorem 2.4, the correspondence with the 7/2 lattice gauge 
theory for j =  1 and provided the thermodynamic limit exists (in the case 
j = 2), it makes sense to define the "glueball mass" as the exponential decay 
rate as Ixr ~ m of the following loop-loop correlation given in terms of 
polarization energies of boundaries: 

lira [lnZA,~,j,~(x)~e--lnZA,~,j,~=~--2(lnZA~j--lnZA,~,j,7=~) ] (2.20) 
A ~ E  3 , , , 

(see, e.g., Ref. 43 for a definition in the same spirit). 
The theory of surface roughening may also be incorporated into the 

present context. This goes as follows. For  simplicity let A be a rectangular 
box. Take any plane P which cuts A into two parts A 1 and A2 and let now 
y = S A P  be the intersection of P with the boundary ~?A of A. Then P is the 
minimal surface for the boundary ~ and it is the separating interface when 
all cr(c 3) are +1 in A I and - 1  in A2, say. 
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3. N U M E R I C A L  R E S U L T S  

In this section we present the numerical results obtained from a Monte 
Carlo computer simulation. Since our aim is to exhibit qualitative features 
of our model, which we consider interesting in their own right, apart from 
thermalization and normalization checks no attempt has been made to 
obtain precise numerical data and to estimate errors. We measured both in 
the ensemble C~(~) (self-intersecting manifolds) and in the ensemble C2(7) 
(self-avoiding manifolds). The Monte Carlo method we used is a local heat 
bath motivated by the close relationship to the three-dimensional Ising 
model as explained in Section 2. It has already been used by Sterling and 
Greensite. (41) There is an alternative local heat bath method, (44) which 
incorporates the self-avoiding condition and which was inspired by a new 
proposal to evaluate Fermion determinants in lattice field theories. (4s) For 
yet other computer simulations of random surfaces, see, e.g., Refs. 39, 
46-49. 

The upgrading procedure we use may now be described as follows. At 
each instant the computer has stored a manifold ME C J(7) by assigning the 
values 0 or 1 to each 2-cell c 2 in A, where the 2-cells whose closure inter- 
sects the boundary ~?A are being given the constant value 0. The computer 
now sweeps through all 3-cells c 3 away from OA. At each c 3 a new trial 
manifold Moew out of the present manifold Mold is constructed by perform- 
ing a local surgery in the form of the substitution 

2 2 2 1 ( m o d  2) Col d ~ Cne w ~ Col d (3.1) 

for all c 2 lying in the closure of the given c 3. It is easy to see that 
Mold E C1(7) implies Mnew E C1(7). Additional checks have to be made if 
instead one works with C2(~) to ensure that Moe w lies in this ensemble (and 
if not, one proceeds to the next 3-cell). As usual for such a method, in each 
case the new manifold is then accepted with probability 

w = exp { - flA Area/[ 1 + exp ( - flA Area) ] } (3.2) 

by calling up a random number in the interval [0, 1]. Here zl Area = 
Area(Mnew)-Area(Moid) is a local quantity, which depends only on the 
values at the 2-cells contained in the closure of the given 3-cell. In the next 
step the same procedure is repeated at the next 3-cell and so on. This 
upgrading procedure satisfies detailed balance. In fact, for the ensemble 
C1(7) this is a standard argument, and for the ensemble C2("/) this is most 
easily seen by imagining excluded configurations to have infinite energy. In 
Ref. 39 we show for C~(7) that the Markov process defined by the 
upgrading is ergodic, thus making the Gibbs' distribution the unique 



Euler Characteristics of Random Surfaces 545 

equilibrium distribution. Recall that in situations like these ergodicity is 
ensured, if the set of configurations is connected under the Markov process. 

We performed calculations on a A = 18 x 18 x 10 lattice and measured 
the case when 7 was empty or the boundary of a square in the l-2-direc- 
tion placed in the middle. We started at flo= 1.8 for self-intersecting 
manifolds and at fl = 1 for self-avoiding manifolds. The initial configuration 
was the empty manifold for 7 = ~ and the minimal surface for 7 ~ ~ -  The 
system was heated gradually with A f t  = 0.05, using the final manifold for/?i 
as the initial manifold for/?i+ 1 and going down to fl = 0. In the case of self- 
intersecting manifolds the number  of sweeps for given fli was 150, of which 
the last 100 were used to evaluate averages. For self-avoiding manifolds the 
corresponding numbers were 300 and 200. The upgrading time per 3-cell 
for self-avoiding manifolds was on the average about  3 times as large as for 
self-intersecting manifolds, where no restraints had to be checked. 

As a check of thermalization for self-intersecting manifolds, we used 
the fact that at fl = 0 and for 7 - - ~  the relation to the Ising model allows 
one to evaluate expectations explicitly. In particular in the infinite volume 
limit the relations (2.13)-(2.15) give 

(Aread)~ = 0j = 1.7 = ~ = 3/2 = 1.5 
(3.3) 

(Zd)~-0, /= 1,7=e = (1 -- 1/128) -- 3(1 -- 1/8) + 3 / 2  = --0.617 

for the area density and the density of the Euler characteristic. More 
generally, at fl = 0, finite size effects may be calculated. Let A be a box with 
sides l l ,  12, and l 3. Since any manifold M lives in the interior of A such that 
dist(t?A,M) t> 1, we take as the volume the quantity V o l =  
( l ~ -  2 ) (12 -2 ) (13 -  2). An easy calculation then gives 

(Area)A,~,j = 1, 7 - -  e / v o l  

= 3/2 + ( 1 / 2 ) [ 1 / ( I 1  - 2) + 1 / ( l  2 - 2) + 1/(/3 - 2)3 (3.4) 

Using (2.13)-(2.15) an analogous but somewhat lengthy formula may be 
derived for the Euler characteristic. 

As a check of thermalization for self-avoiding manifolds we started 
with different seeds in the random number  generator. Also we compared 
with the result obtained by averaging over the last 100 sweeps only. 

Figure 1 gives a plot of the area density versus / / fo r  self-intersecting 
manifolds and for the case 7 = ~ ,  which by our previous discussion is 
essentially the energy density expectation of the three-dimensional Ising 
model. By (3.4) it should take the value 1.625 at/~ = 0. Numerically this is 
well reproduced. Note  also that by Schwarz inequality the derivative with 
respect to/~ is negative, so the area density is monotonically decreasing in 
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Fig. I, The expectation of the area density ( � 9  and (minus) its derivative ( [ ] )  versus fl on a 
18 x 18 x 10 lattice for self-intersecting manifolds without boundary. 

ft. Figure 1 also contains a plot of (minus) this derivative, reproducing 
(with our accuracy) a phase transition point of the three-dimensional Ising 
model at the right fl, namely, at fi = 0.4338 [see (2.12) and, e.g., Ref. 50]. 
The corresponding result for the self-avoiding manifold is similar with a 
corresponding phase transition at fi~0.3. Also the area density is always 
smaller than for self-intersecting manifolds, as is to be expected. 

Figure 2 shows the Euler characteristic per unit area plotted versus fl 
and again for self-intersecting manifolds but now with boundary 
7 = 6(8 x 8). By this observable we mean the following. Consider the quan- 
tity 

G( M) = z( M)/ Area( M) (3.5) 

which for ~ = 25 can be viewed as the mean Gauss-Bonnet density of the 
manifold M. By the bound (2.4), this is an intensive quantity. For large fl, 
intuitively M is approximately the minimal surface Mini,(7) plus small and 
not densely populated connected components with empty boundary. For 
decreasing fl, M starts to fill up all of A by forming more and more connec- 
ted components per unit area (or equivalently per unit volume). At a cer- 
tain fl, ( G )  attains a maximum, indicating that the increase in the number 
of handles per unit area is greater than the increase in the number of con- 
nected components per unit area. Eventually, as fl ~ 0, ( G )  becomes 
negative. More precise measurements (44) indicate that the temperature, at 
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Fig. 2. The expectation of the Euler characteristic per unit area versus fl on a 18 x 18 x 10 
lattice for self-intersecting manifolds with boundary Y = 8(8 x 8). 

which ( G )  = 0, is exactly the critical temperature of the Ising model. This 
might lead to a new geometrical understanding of the structure of the 
phase transition in the Ising model. Also we obtained a qualitatively similar 
picture for the case of self-avoiding manifolds. 

In Fig. 3 for 7 = •(8 x 8), 0(12 x 12), c?(18 x 18), we have plotted the 
following dimensionless quantity versus #: 

((Area)A,#j= 1,~-- (Area)A,#,j=l,~=z)/Areami,(y) (3.6) 

the area excess, and as discussed above it is obtained by taking the 
derivative of the polarization energy of the boundary. By our previous dis- 
cussion, for Y ---' oc this may be interpreted as the derivative of the string 
tension with respect to #. Figure 4 gives another dimensionless quantity 

~)~ ) A,fl,j= l,y -- ~ )  ) A,f,j= i ,  7 = ~ (3.7) 

The quantity in (3.7) is the excess of the Euler characteristic. By 
Theorem 2.4 and the discussion thereafter we expect that they are intensive 
quantities. Since they are differences of extensive quantities, their numerical 
evaluation is subject to strong fluctuations. Thus the interesting theoretic 
aspects of this model seem simultaneously difficult to analyze numerically. 
For the polarization energy in the ensemble CI(y), however, we show in 
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Ref. 42 that it may be obtained from expectations in the ensemble 
C1(~ = ~ )  alone, thus avoiding this difficulty. In Ref. 42 we also establish 
the relationship of the polarization energy to the string tension. 

At small/3 the manifolds intuitively should lose memory of their boun- 
dary, hence we expect the quantities (3.6) and (3.7) then to take the 
value 0. In particular the string tension should vanish. Numerically this is 
reasonably well satisfied. Furthermore both plots indicate a phase trans- 
ition at /3~0.5 and at /3~0.3 for self-intersecting and self-avoiding 
manifolds, respectively. We interpret these as the /3-values where this 
memory of the boundary is lost, i.e., where the long-range correlations dis- 
appear. These phase transitions are scale invariant in the sense of a 7 
independence. We recall that a corresponding observation has been made 
for the self-avoiding random walk. There the phase transition point does 
not depend on the choice of the (fixed) end points. (51's2) Considerations in 
this spirit go back to Hammersley. (53) It would therefore be interesting to 
see how much our critical value for/3 will differ from the one in a lattice 
model in which the size of ~ is allowed to vary. On a computer such an 
ensemble could for example be simulated by adapting the method used by 
A. Beretti and A. Sokal for random walks with varying end points. ~54) Note 
also that for the case of self-avoiding manifolds the choice ~3(8 x 8) tbr the 
boundary seems to be too small, since the manifolds are then not yet 
"elastic" enough. 

Next notice that the choice 7 = ~(18 x 18) corresponds to the interface 
situation. Now the roughening phase transition for the Ising model is 
located at/3 = 0.78 (see, e.g., Refs. 55, 56, and the references quoted there). 
Not surprisingly our observables plotted in Figs. 3a and 4a do not 
exhibited a singularity there. Indeed, the roughening transition is obtained 
by considering transverse fluctuations of the interface. Note, however, that 
the maximum of the mean Gauss-Bonnet density, as plotted in Fig. 2, is 
located close to this /?-value. (For other discussions of the roughening 
transition in the context of Wilson loops, see, e.g., Refs. 57-59). 

The plot in Fig. 5 describes the result of a test of the statistical 
independence of the (time) fluctuations 6 Eul(t) and 6 Area(t) of the Euler 
characteristic and the area as discussed in Section 1. This test was carried 
out for self-intersecting manifolds with a new simulation on a 22 x 22 x 22 
lattice with empty boundary starting at /3 = 0.6 going down to /3 = 0.0 in 
steps A/3 = 0.02. The number of sweeps was again 150, of which the last 100 
were used to calculate averages. 

Plotted is the quantity 
t 

L . ~ - ~ )  j t -6 Area(t) 2/6 Eul(t) 2 (3.8) 
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Test of statistical independence of time fluctuations of area and Euler characteristic 
by measuring quantity (3.8) versus fl on a 22 x 22 • 22 lattice for empty boundary. 

The results are quite satisfactory. For large fl these quantities are small 
compared to 1, indicating that for such fl changes in topology are strongly 
correlated to changes in the areas. Close to the critical point there is a 
sharp increase and finally a constant behavior for small ft. Note that since 
we compare the manifolds M(t) and M(t + 1), these time averages do not 
correspond to averages in the Gibbs ensemble. 

4. T H E R M O D Y N A M I C  L IMITS 

This section contains a general proof of thermodynamic limits for 
Gibbs' distributions for a large class of potentials on C J(7) in the spirit of 
classical lattice systems as discussed, e.g., in Ref. 29. 

Theorems 2.1-2.3 will therefore be particular cases of the results to be 
established below. Compared to the typical situations considered in Ref. 29, 
the additional difficulty in proving thermodynamic limit theorems in the 
present context stems from the geometric conditions imposed on the 
M e  C J(7). These boundary (and self-avoiding) properties may be viewed as 
being described in terms of hard core potentials. The main idea of the proof 
will be to prove approximate sub- and superadditivity of the free energy 
densities by performing local surgeries on the manifolds M e  CJ(~). Note 
that techniques of the same spirit have been used in percolation 
theory. (60,61) 

We start by considering the following class of real-valued functions on 
C~(~). Let U A e 2  be any polynomial of the cZ's contained in A. If we 

822/40/3-4-12 
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enumerate these cZ's and N(A) is their number, for given values of the c>s 
we may write 

U A(C2,..., C2N(A))= U ~(X) (4.1) 

where J r=  {c 2 cA, c2= 1 }. With this notation we assume that 

U(X)= y '  ~b(Y) (4.2) 
X c Y  

where the "potential" ~b is a function on finite subsets of any of our e2's in 
R 3. This assumption in particular implies that UA(X) does not depend on 
the index A, which therefore we will drop from now on. 

The translation group on Z 3 induces translations on the plaquettes 
and hence on these subsets X of c2's. Let B be the real Banach space of 
functions ~b which are translation invariant 

~b(X+ a) = ~b(X) (4.3) 

for all a s Z 3 and for which 

I1011 = Y',' 14,(X)l N(X-----~ < oo (4.4) 

Here the prime denotes the restriction to those X for which the origin 0 lies 
in the closure of at least o n e  r E ](. Also N(X) is the number of c2's in X, 
i.e., the "area" of X. 

The area function itself belongs to this class and is given by ~b(X) = 1 
iff X consists of exactly one c 2 and is zero otherwise. Its norm is 6. 
Analogously, as may be inferred from (2.13)-(2.15), the Euler characteristic 
also belongs to this class. Next let Bo be the dense linear subspace con- 
sisting of those finite range potentials ~b with ~b(X) =A 0 for only a finite num- 
ber of Jr having the origin 0 in their closure. Now define 

U~(X)= ~ ~b(Y) (4.5) 
Y c X  

Then if ~b e B 

I U~(X)] ~< N(X) II~bl[ (4.6) 

Let Q be any polynomial in the c~'s and consider Q to be a function of M. 
Q is introduced to obtain correlation functions. By supp Q we denote the 
smallest box containing all the c2's in Q. 

A Gibbs' ensemble on C~(7) is now given by attributing to each 
"manifold" M a weight 

e x p [ -  U~(M)- Q(M)] (4.7) 
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We now introduce the partition function 

ZAj,~(C~, Q) = ~ e x p [ -  U~(M)- Q(M)]  (4.8) 
M~C~(~) 

and define the free energy density to be 

ZA,j,,/(~, Q)= N(A) -1 log ZAj,~(~, Q) (4.9) 

where we recall that N(A) is the number of c2's in A. This generalizes our 
definition of the partition function and free energy density as given in Sec- 
tion 2. 

Theorem 4.1. If ~b ~ B then the following limit exists if A tends to 
infinity in the sense of van Hove: 

Pj,~(~b, Q ) =  lira PAj,,~(~, Q) (4.10) 
A ~ E  3 

Furthermore 
(a) if ~, ~ EB then 

IPj,;(~b, Q)-Pj,~(~, Q)I ~< I1~- ~'N (4.11) 

(b) the functions Pj, (., Q) are convex and positive on B. 

Proof. The elementary estimate 

l o g ~ e x p ( - x ; ) - l o g ~ e x p ( - y , ~ )  ~<Max Ixi-yiL (4.12) 
t 7 - " i i 

for real xi and Yi combined with (4.8)-(4.9) gives 

]PAj,7(~, Q) - PA,j,~(O, Q)I ~< Ilq ~ - ~PN (4.13) 

uniformly in A. 
Similarly the convexity of PA,j,7(O, Q) in ~b follows from the elementary 

inequality 

log ~ e x p ( - c t x i -  (1 - e) Yi) 
i 

<<.alog~exp(--xi)+(1--a)log~exp(-yi)  (4.14) 
i i 

valid for 0~<a~<l and all real x, and yi. Indeed (4.14) is an easy con- 
sequence of H61der's inequality. Hence (a) and (b) of Theorem 4.1 wil l  
follow, once (4.10) is established. Also by (4.13) and the density of Bo in B 
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it suffices to verify (4.10) for ~b ~ Bo. For such a finite range potential ~b, let 
A be a finite union of cubes forming a rectangular box such that ~b(X)= 0 
whenever the origin is in the closure of X and X is not contained in A. 

Assume now that each connected component of ~3A1 c~ A 2 or AI n 3A 2 
is diffeomorphic to the open unit 2-disk and that dist(supp Q, OAk)>2, 
dist(7, OAk) > 2 (k = 1, 2). In particular 7 and supp Q lie either completely 
inside or outside each A k and A1 ~ A2, so 7 ~ Ak is either 7 or the empty set 
(k = 1, 2) and similarly for supp Q. 

Let NI(A~,A2) be 12 times the number of a's for which A , ~  
( A + a ) # ~  and A2c~(A+a)4=~. Also let N2(A~, A2) be the number of 
c2's with distance smaller than x/3 + 2 to (OA~ c~ A2) w (A~ c~ #A2). Set 

N(A~, A2)= Max N~(AI, A~) (4.15) 
J 

By an easy adaption of the arguments in Ref. 29 (see, e.g., the proof of 
Proposition 2.3.2 there), (4.10) is now a consequence of the following 
lemma. 

Lemma 4.2. With the above notation 

IN(A1 w A2) PAl ~ A2,2,~(( J, Q) -- N(AI ) P A~,j,y(( 9, Q) - N(A2) P Az,j,y(( o, Q)I 

<~N(A1, A2)(3 Ll~b[I +21n  2) (4.16) 

ProoL We establish approximate sub- and superadditivity properties. 
As for the subadditivity we have 

ZAt ~ a2j, r(~b, Q) = ~ exp[ - -  Ufb(X 1 ~- X2) - -  Q(X1 + X2)] 
X1 c AI,X2 c A 2 

X 1 L) X 2 ~ c J  1 uA2(~) 

~ e x p [ -  U4(X1)- Q(X1) ] 
XI ~ AI c~ C J l  ~:A2(7) 

x ~ exp[ - U0(X2) - Q(X2)] 
X2= A2~ CJAlwA2(Y) 

• exp N(A~, A2) l[~b[[ (4.17) 

Here we used the estimate 

I U ~ b ( J ( 1  L) } ["2)  - -  U ~ b ( X 1 ) - -  U ~ ( J t " 2 )  [ <~N(A1, A2)H~b[[ ( 4 . 1 8 )  

which follows by the same arguments as in Ref. 29. Also we used the 
notation X k c  Akc~ C~1ua2(7) to denote the restriction of an element M in 
C~1~A2(7) to Ak. We also used the fact that Q(X1 + X2)= Q(X~)+ Q(X2), 
which follows from our assumptions on A~, A2 and supp Q. 
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Now Xk is not necessarily an element of Cs (k = 1, 2). However, 
the failure to satisfy this condition arises only near 0A~ hA2 for k =  1 and 
near AlnQA2 for k=2 .  We will therefore modify ~71 n e a r  OA~nAz to 
obtain an element MI(X~)E C~(~,). This will give 

I Ue(X~)- U~(MI(Xa))I <~N(At, A2)I1~11 

Q(MI(X~)) = Q(XI) 
(4.19) 

We will also see that for any given X1 

# { Y, I M~ ( YI ) = MI(X, ) } ~ 2 u(a''a2) (4.20) 

There is a similar construction of M2(J(2). Replacing the sum over Jr1 and 
X2 by M~ and M 2, respectively, (4.17)-(1.20) then give 

N(A1) P&,j,y(O, Q)+ N(A2)PA2,j.~(qt, Q) 

<~PA,,~A2j,~(O, Q)+N(AI, A2)(3 II~bll +21n 2) (4.21) 

To obtain MI(X1) we proceed as follows. For any component T of 
c3A 1 c~ A2, let the two-dimensional manifold S be constructed in the follow- 
ing way. Consider that part of the boundary of the tubular neighborhood 
of ~3A 1 ~ A  2 of radius .,/3 + 1/2 which is contained in A~. By moving the 
points of this manifold slightly and differentiably by at most 1/4 we may 
achieve that the resulting set S does not contain any vertices c o and that it 
intersects any c i ( i= 1, 2) transversally (see Fig. 6). S has the topology of 

Fig. 6. Surgery near the intersection of two sets A1, A 2. 
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the open unit 2-disk and its intersection with X~ and hence M has the 
typical form depicted in Fig. 7a for the case 

and Fig. 7b for the case 

M G C1Alu A2(7 ) 

M ~  O21 ~A2('~ ' ) 

We note that by assumption and construction S does not intersect 7 
and supp Q. Next we assign values 0 and 1 to the regions on S carved out 
by the piecewise differentiable curves forming S n X~: To the region having 
aS as part of its boundary we give the value 0. Inductively we change the 
value any time we cross a line in S nX1. It is easy to see that this 
procedure is well defined and thus uniquely gives values 0 and 1 to all c 3 
cells that intersect S. We now modify X1 between S and the component T 
of # A l n A :  by taking the surface formed by those c 3 that have value 1. 
Doing this for all components T leads to the desired manifold M~(X1). 
Obviously the estimates (4.19) and (4.20) hold, The proof of (4.19) is 
analogous to the proof of (4.18) and (4.20) follows by counting at how 
many c2's at most X1 and MI(XI) may differ. This concludes the proof of 
the approximate subadditivity. 

As for the approximate superadditivity, we start with the relation 

ZA,j#(r Q)'ZA2,j,7(r Q) = ~ ~, exp[- Uo(MI) 
M 1 c c J I ( y  ) M2 ~ cJ2(y)  

- Ur - Q(M1) - Q(M2)] (4.22) 

Now it is easy to construct examples where M 1 u M 2 is not an element 
of C~,,oA2(7). Again, however, it is possible to perform a surgery to obtain 

Fig. 7. Curves resulting from the intersection of a manifold in C1(7) (a) or in C2(7) (b) with 
the set S. 
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M'I(M,)eCJA~(7 ) lying entirely in AI\A 2. This time, for example, S' in 
Fig. 6 is used to modify M~ between S' and the corresponding component 
of ~A2c~A~ in a completely analogous way as was done above with S. 
Applying this method to every component of c3A 2 c~ A 1 gives an M'~(MI) 
with 

I Ur U~(M1)I ~< N(A~, A2)IIr 

In analogy to (4.20) for given M I, we have the estimate 

# {Ma I M](M~) = M](M~)} <~ 2 N(AI'A2) 

(4.23) 

(4.24) 

A similar construction may be carried out for M2, giving an M'2(M2). But 
then, since by construction 

MI(M1 ) ~ M~(M2) = 5~5 (4.25) 

M'I(M~) w M~(M2) indeed belongs to  C J  1 ~j//2(y ). Also 

Q(M~ ) + Q(M2) = Q(M'I(MI ) w M'2(M2)) (4.26) 

Estimates (4.22)-(4.24) combined give 

ZA,.j.7(r Q)'ZA2,j.7(O, Q) <~ ~ e x p [ -  Uo(Mi) 

- Ur - Q(M](M1) w M~(M2))] 

x expE2N(A1, A2)([PCH + 2  In 2)] 

~< ~ e x p [ -  Ur - Q(M)] 
M c CJAIwA2(Y) 

x expEN(A1,A2)(3 [ICH + 2 1 n 2 ) ]  (4.27) 

Taking the logarithm proves the desired approximate superadditivity, con- 
cluding the proof of Lemma 4.2 and hence also of Theorem 4.1. | 

Theorem 2.2 now follows from the simple trick. Let Q be any 
monomial in the c2's with coefficient 1. Then Q takes only values 0 and 1 
and hence Q = (e ~~ - 1)(e ~ -  l) 1. Therefore the expectation of Q is a sum 
of quotients of partition functions such that we may apply Theorem 4.1. 
The first part of Theorem 2.3 follows from a standard convexity argument. 
As for the second part we note that owing to the assumption 7 = ~ we 
have translation invariance. Hence we may apply Theorem 2.2, since X is a 
polynomial in the c2's. 
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Finally the proof of Theorem 2.4 is obtained by using the same ideas 
as employed in the proof of Lemma 4.2. More generally we have the follow- 
ing result. For  a given 7 forming the boundary of a square, choose a finite 
set of 3-ceUs such that their closure forms a cube T(y) with 7 in the interior 
and 10 < dist(x, y ) <  12 for any x ~ OT(y). For  a finite range potential ~ ~ Bo 
and the associated range A, consider the set T(7, z l )=  T(7)+ A. Let N(7, A) 
be the number of 2-cells intersecting T(y, zl). Theorem 2.4 is now a special 
case of the following lemma. 

Lemma 4.3. 

ProoL 
Lemma 4.2, 

The following estimate holds uniformly in A: 

e x p [ - N ( 7 ,  ~)(tl~LI + In 2)] 

ZAj,~(q~, Q) exp[N(7, A)(II~II + In 2)] 
ZA, j,~= ~(~ b, Q) ~< 

~< (4.28) 

In analogy to the construction of the set S in the proof of 
starting with ~Q(7) we may construct a set U with 9 <  

dist(x, 7) < 11 for all xE OU and such that 0Uis transversal to all/-cells and 
has a tubular neighborhood of radius 3. Given an M in C~(7), we may now 
construct an element M' in C~(7 = ~3), which agrees with M outside the set 
U. Conversely to any M in C~(7 = ~ ) ,  we first construct an element M" in 
C~(7 -- ~ ) ,  which agrees with M outside of U and such that dist(x, 7) > 3 
for x e M". Taking the union of M" with the minimal area for ~ gives an 
element M "  in C~(7). The estimate (4.28) is now derived by the same 
arguments as used in the proof of Lemma 4.2. | 
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